Improved nuclear medicine uniformity assessment with noise texture analysis.
نویسندگان
چکیده
UNLABELLED Because γ cameras are generally susceptible to environmental conditions and system vulnerabilities, they require routine evaluation of uniformity performance. The metrics for such evaluations are commonly pixel value-based. Although these metrics are typically successful at identifying regional nonuniformities, they often do not adequately reflect subtle periodic structures; therefore, additional visual inspections are required. The goal of this project was to develop, test, and validate a new uniformity analysis metric capable of accurately identifying structures and patterns present in nuclear medicine flood-field uniformity images. METHODS A new uniformity assessment metric, termed the structured noise index (SNI), was based on the 2-dimensional noise power spectrum (NPS). The contribution of quantum noise was subtracted from the NPS of a flood-field uniformity image, resulting in an NPS representing image artifacts. A visual response filter function was then applied to both the original NPS and the artifact NPS. A single quantitative score was calculated on the basis of the magnitude of the artifact. To verify the validity of the SNI, an observer study was performed with 5 expert nuclear medicine physicists. The correlation between the SNI and the visual score was assessed with Spearman rank correlation analysis. The SNI was also compared with pixel value-based assessment metrics modeled on the National Electrical Manufacturers Association standard for integral uniformity in both the useful field of view (UFOV) and the central field of view (CFOV). RESULTS The SNI outperformed the pixel value-based metrics in terms of its correlation with the visual score (ρ values for the SNI, integral UFOV, and integral CFOV were 0.86, 0.59, and 0.58, respectively). The SNI had 100% sensitivity for identifying both structured and nonstructured nonuniformities; for the integral UFOV and CFOV metrics, the sensitivities were only 62% and 54%, respectively. The overall positive predictive value of the SNI was 87%; for the integral UFOV and CFOV metrics, the positive predictive values were only 67% and 50%, respectively. CONCLUSION The SNI accurately identified both structured and nonstructured flood-field nonuniformities and correlated closely with expert visual assessment. Compared with traditional pixel value-based analysis, the SNI showed superior performance in terms of its correlation with visual perception. The SNI method is effective for detecting and quantifying visually apparent nonuniformities and may reduce the need for more subjective visual analyses.
منابع مشابه
Feasibility of using statistical tests in evaluation of non-uniformity [Persian]
Introduction: Non-uniformity test is essentially the only required daily QC procedure in nuclear medicine practice. Noise creates statistical variation or random error in a flood image. Non-uniformity on the other hand does not have statistical nature and may be regarded as systemic error. The present methods of non-uniformity calculation do not distinguish between these two types of erro...
متن کاملQuantitative Assessment of Conventional and Modern De-Noising on Nuclear Medicine Images
Introduction: One of the major problems in the development of nuclear medicine images is the presence of noise. The noise level in nuclear medicine images is usually reduced by the analysis of imaging data in a Fourier transform environment. The main drawback of this environment belongs to low signal to noise ratio in high frequencies because removing noise frequencies may remove data and times...
متن کاملAssessment of the Wavelet Transform for Noise Reduction in Simulated PET Images
Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...
متن کاملRelative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT.
UNLABELLED We determined the relative effect of corrections for scatter, depth-dependent collimator response, attenuation, and finite spatial resolution on various image characteristics in cardiac SPECT. METHODS Monte Carlo simulations and real acquisition of a 99mTc cardiac phantom were performed under comparable conditions. Simulated and acquired data were reconstructed using several correc...
متن کاملImproved quantification of salivary gland scintigraphy by means of factor analysis
Introduction: In this study the automatic separation of oral and salivary gland activity and spontaneous secretion by means of factor analysis for quantitative salivary gland scintigraphy is introduced. Methods: After intravenous administration of 99mTc sodium pertechnetate, dynamic scintigraphy was performed. 20 minutes after tracer application 2 ml of lemon juice was delivered to stimulate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 55 1 شماره
صفحات -
تاریخ انتشار 2014